Extensions 1→N→G→Q→1 with N=C22 and Q=C22.F5

Direct product G=N×Q with N=C22 and Q=C22.F5
dρLabelID
C22×C22.F5160C2^2xC2^2.F5320,1606

Semidirect products G=N:Q with N=C22 and Q=C22.F5
extensionφ:Q→Aut NdρLabelID
C221(C22.F5) = C5⋊C87D4φ: C22.F5/C5⋊C8C2 ⊆ Aut C22160C2^2:1(C2^2.F5)320,1111
C222(C22.F5) = C24.4F5φ: C22.F5/C2×Dic5C2 ⊆ Aut C2280C2^2:2(C2^2.F5)320,1136

Non-split extensions G=N.Q with N=C22 and Q=C22.F5
extensionφ:Q→Aut NdρLabelID
C22.1(C22.F5) = D4.(C5⋊C8)φ: C22.F5/C5⋊C8C2 ⊆ Aut C221608C2^2.1(C2^2.F5)320,270
C22.2(C22.F5) = C42.3F5φ: C22.F5/C2×Dic5C2 ⊆ Aut C22804C2^2.2(C2^2.F5)320,198
C22.3(C22.F5) = C42.9F5φ: C22.F5/C2×Dic5C2 ⊆ Aut C22804C2^2.3(C2^2.F5)320,199
C22.4(C22.F5) = (C2×C20)⋊1C8φ: C22.F5/C2×Dic5C2 ⊆ Aut C22160C2^2.4(C2^2.F5)320,251
C22.5(C22.F5) = C24.F5φ: C22.F5/C2×Dic5C2 ⊆ Aut C2280C2^2.5(C2^2.F5)320,271
C22.6(C22.F5) = Dic5.13M4(2)φ: C22.F5/C2×Dic5C2 ⊆ Aut C22160C2^2.6(C2^2.F5)320,1095
C22.7(C22.F5) = C10.(C4⋊C8)central extension (φ=1)320C2^2.7(C2^2.F5)320,256
C22.8(C22.F5) = C2×C10.C42central extension (φ=1)320C2^2.8(C2^2.F5)320,1087
C22.9(C22.F5) = C2×Dic5⋊C8central extension (φ=1)320C2^2.9(C2^2.F5)320,1090
C22.10(C22.F5) = C2×C23.2F5central extension (φ=1)160C2^2.10(C2^2.F5)320,1135

׿
×
𝔽